Monday, December 12, 2016

Life as a young academic is incredibly stressful

When we asked researchers what they’d fix about science, many talked about the scientific process itself, about study design or peer review. These responses often came from tenured scientists who loved their jobs but wanted to make the broader scientific project even better.
But on the flip side, we heard from a number of researchers — many of them graduate students or postdocs — who were genuinely passionate about research but found the day-to-day experience of being a scientist grueling and unrewarding. Their comments deserve a section of their own.
Today, many tenured scientists and research labs depend on small armies of graduate students and postdoctoral researchers to perform their experiments and conduct data analysis.
These grad students and postdocs are often the primary authors on many studies. In a number of fields, such as the biomedical sciences, a postdoc position is a prerequisite before a researcher can get a faculty-level position at a university.
This entire system sits at the heart of modern-day science. (A new card game called Lab Wars pokes fun at these dynamics.)
But these low-level research jobs can be a grind. Postdocs typically work long hours and are relatively low-paid for their level of education — salaries are frequently pegged to stipends set by NIH National Research Service Award grants, which start at $43,692 and rise to $47,268 in year three.
Postdocs tend to be hired on for one to three years at a time, and in many institutions they are considered contractors, limiting their workplace protections. We heard repeatedly about extremely long hours and limited family leave benefits.
"Oftentimes this is problematic for individuals in their late 20s and early to mid-30s who have PhDs and who may be starting families while also balancing a demanding job that pays poorly," wrote one postdoc, who asked for anonymity.
This lack of flexibility tends to disproportionately affect women — especially women planning to have families — which helps contribute to gender inequalities in research. (A 2012 paper found that female job applicants in academia are judged more harshly and are offered less money than males.) "There is very little support for female scientists and early-career scientists," noted another postdoc.
"There is very little long-term financial security in today's climate, very little assurance where the next paycheck will come from," wrote William Kenkel, a postdoctoral researcher in neuroendocrinology at Indiana University. "Since receiving my PhD in 2012, I left Chicago and moved to Boston for a post-doc, then in 2015 I left Boston for a second post-doc in Indiana. In a year or two, I will move again for a faculty job, and that's if I'm lucky. Imagine trying to build a life like that."
This strain can also adversely affect the research that young scientists do. "Contracts are too short term," noted another researcher. "It discourages rigorous research as it is difficult to obtain enough results for a paper (and hence progress) in two to three years. The constant stress drives otherwise talented and intelligent people out of science also."
Because universities produce so many PhDs but have way fewer faculty jobs available, many of these postdoc researchers have limited career prospects. Some of them end up staying stuck in postdoc positions for five or 10 years or more.
"In the biomedical sciences," wrote the first postdoc quoted above, "each available faculty position receives applications from hundreds or thousands of applicants, putting immense pressure on postdocs to publish frequently and in high impact journals to be competitive enough to attain those positions."
Many young researchers pointed out that PhD programs do fairly little to train people for careers outside of academia. "Too many [PhD] students are graduating for a limited number of professor positions with minimal training for careers outside of academic research," noted Don Gibson, a PhD candidate studying plant genetics at UC Davis.
Laura Weingartner, a graduate researcher in evolutionary ecology at Indiana University, agreed: "Few universities (specifically the faculty advisors) know how to train students for anything other than academia, which leaves many students hopeless when, inevitably, there are no jobs in academia for them."
Add it up and it's not surprising that we heard plenty of comments about anxiety and depression among both graduate students and postdocs. "There is a high level of depression among PhD students," writes Gibson. "Long hours, limited career prospects, and low wages contribute to this emotion."
A 2015 study at the University of California Berkeley found that 47 percent of PhD students surveyed could be considered depressed. The reasons for this are complex and can't be solved overnight. Pursuing academic research is already an arduous, anxiety-ridden task that's bound to take a toll on mental health.
But as Jennifer Walker explored recently at Quartz, many PhD students also feel isolated and unsupported, exacerbating those issues.

Fixes to keep young scientists in science

We heard plenty of concrete suggestions. Graduate schools could offer more generous family leave policies and child care for graduate students. They could also increase the number of female applicants they accept in order to balance out the gender disparity.
But some respondents also noted that workplace issues for grad students and postdocs were inseparable from some of the fundamental issues facing science that we discussed earlier. The fact that university faculty and research labs face immense pressure to publish — but have limited funding — makes it highly attractive to rely on low-paid postdocs.
"There is little incentive for universities to create jobs for their graduates or to cap the number of PhDs that are produced," writes Weingartner. "Young researchers are highly trained but relatively inexpensive sources of labor for faculty."
Some respondents also pointed to the mismatch between the number of PhDs produced each year and the number of academic jobs available.
A recent feature by Julie Gould in Nature explored a number of ideas for revamping the PhD system. One idea is to split the PhD into two programs: one for vocational careers and one for academic careers. The former would better train and equip graduates to find jobs outside academia.
This is hardly an exhaustive list. The core point underlying all these suggestions, however, was that universities and research labs need to do a better job of supporting the next generation of researchers. Indeed, that's arguably just as important as addressing problems with the scientific process itself. Young scientists, after all, are by definition the future of science.
Weingartner concluded with a sentiment we saw all too frequently: "Many creative, hard-working, and/or underrepresented scientists are edged out of science because of these issues. Not every student or university will have all of these unfortunate experiences, but they’re pretty common. There are a lot of young, disillusioned scientists out there now who are expecting to leave research."

Science needs to correct its greatest weaknesses

Science is not doomed.

For better or worse, it still works. Look no further than the novel vaccines to prevent Ebola, the discovery of gravitational waves, or new treatments for stubborn diseases. And it’s getting better in many ways. See the work of meta-researchers who study and evaluate research — a field that has gained prominence over the past 20 years.
But science is conducted by fallible humans, and it hasn’t been human-proofed to protect against all our foibles. The scientific revolution began just 500 years ago. Only over the past 100 has science become professionalized. There is still room to figure out how best to remove biases and align incentives.
To that end, here are some broad suggestions:
One: Science has to acknowledge and address its money problem. Science is enormously valuable and deserves ample funding. But the way incentives are set up can distort research.
Right now, small studies with bold results that can be quickly turned around and published in journals are disproportionately rewarded. By contrast, there are fewer incentives to conduct research that tackles important questions with robustly designed studies over long periods of time. Solving this won’t be easy, but it is at the root of many of the issues discussed above.
Two: Science needs to celebrate and reward failure. Accepting that we can learn more from dead ends in research and studies that failed would alleviate the "publish or perish" cycle. It would make scientists more confident in designing robust tests and not just convenient ones, in sharing their data and explaining their failed tests to peers, and in using those null results to form the basis of a career (instead of chasing those all-too-rare breakthroughs).
Three: Science has to be more transparent. Scientists need to publish the methods and findings more fully, and share their raw data in ways that are easily accessible and digestible for those who may want to reanalyze or replicate their findings.
There will always be waste and mediocre research, but as Stanford’s Ioannidis explains in a recent paper, a lack of transparency creates excess waste and diminishes the usefulness of too much research.
Again and again, we also heard from researchers, particularly in social sciences, who felt that their cognitive biases in their own work, influenced by pressures to publish and advance their careers, caused science to go off the rails. If more human-proofing and de-biasing were built into the process — through stronger peer review, cleaner and more consistent funding, and more transparency and data sharing — some of these biases could be mitigated.
These fixes will take time, grinding along incrementally — much like the scientific process itself. But the gains humans have made so far using even imperfect scientific methods would have been unimaginable 500 years ago. The gains from improving the process could prove just as staggering, if not more so.

No comments:

Post a Comment